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Abstract - The CasPer algorithm is a constructive neural network algorithm. CasPer creates
cascade network architectures in a similar manner to Cascade Correlation. CasPer, however,
uses a modified form of the RPROP algorithm, termed Progressive RPROP, to train the whole
network after the addition of each new hidden neuron. Previous work with CasPer has shown
that it builds networks which generalise better than CasCor, often using less hidden neurons.
This work adds two extensions to CasPer. First, an enhancement to the RPROP algorithm,
SARPROP, is used to train newly installed hidden neurons. The second extension involves the
use of a pool of hidden neurons, each trained using SARPROP, with the best performing
selected for insertion into the network. These extensions are shown to result in CasPer
producing more compact networks which often generalise better than those produced by the
original CasPer algorithm.
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1 INTRODUCTION
The CasPer [1] algorithm has been shown to be a powerful method for training neural
networks. CasPer is a constructive algorithm which inserts hidden neurons one at a
time to form a cascade architecture, similar to Cascade Correlation (CasCor) [2].
CasPer has been shown to produce networks with fewer hidden neurons than CasCor,
while also improving the resulting network generalisation, especially with regression
tasks [1]. The reasons for CasPer’s improved performance is that it does not use either
Cascor’s correlation measure, which can cause poor generalisation performance [3],
or weight freezing, which can lead to oversize networks [4].

A difficult problem faced by both CasPer and CasCor is that the newly created hidden
neuron may have difficulty in converging to a good solution on the error surface. One
main cause for this poor convergence may be the presence of local minima. CasCor
addresses this problem by creating a pool of hidden neurons, each with a different set
of starting weights, thus enabling a wider search of the error surface and reducing the
chance of convergence to a poor local minimum.

In order to improve the convergence ability of CasPer, two extensions are proposed.
The first is to employ the SARPROP algorithm [5] to train the newly inserted hidden
neuron. SARPROP is based on the RPROP algorithm [6], and uses Simulated
Annealing to enhance the convergence properties of RPROP. SARPROP has been
shown to be successful in escaping local minima [5], a property which will enable a
better search of the error surface by the new hidden neuron. The second extension



involves CasPer training a pool of hidden neurons, as is done in CasCor. Each hidden
neuron in the pool is trained using SARPROP, as in the first extension.

2 THE CASPER ALGORITHM
CasPer uses a modified version of the RPROP algorithm for network training. RPROP
is a gradient descent algorithm which uses separate adaptive learning rates for each
weight. Each weight begins with an initial learning rate, which is then adapted
depending on the sign of the error gradient seen by the weight as it traverses the error
surface. Τhis results in the update value for each weight adaptively growing or
shrinking as a result of the sign of the gradient seen by that weight.

The CasPer algorithm constructs cascade networks in a similar manner to CasCor:
CasPer starts with a single hidden neuron and successively inserts hidden neurons.
RPROP is used to train the whole network each time a hidden neuron is added. The
use of RPROP is modified, however, such that when a new neuron is inserted, the
initial learning rates for the weights in the network are reset to values which depend
on the position of the weight in the network (hence the name Progressive RPROP).
The network is divided into three separate groups, each with its own initial learning
rate: L1, L2 and L3 (Figure 1). The first group is made up of all weights connecting to
the new neuron from previous hidden and input neurons. The second group consists of
all weights connecting the output of the new neuron to the output neurons. The third
group is made up of the remaining weights, which consist of all weights connected to,
and coming from, the old hidden and input neurons.

Fig. 1. The CasPer architecture - a second hidden neuron has just been added. The vertical
lines sum all incoming inputs.
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The values of L1, L2 and L3 are set such that L1 >> L2 > L3. The reason for these
settings is similar to the reason that CasCor uses the correlation measure: the high
value of L1 as compared to L2 and L3 allows the new hidden neuron to learn the
remaining network error. Similarly, having L2 larger than L3 allows the new neuron to
reduce the network error, without too much interference from other weights.
Importantly, however, no weights are frozen, and hence if benefit can be gained by the
network by modifying an old weight, this occurs, albeit at an initially slower rate than
the weights connected to the new neuron.

CasPer also makes use of weight decay as a means to improve the generalisation
properties of the constructed network. After some experimentation it was found that
the addition of a Simulated Annealing (SA) term applied to the weight decay, as used
in the SARPROP algorithm [5], often improved convergence and generalisation. Each
time a new hidden neuron is inserted, the weight decay begins with a large magnitude,
which is then reduced by the SA term. The amount of weight decay is proportional to
the square of the weight magnitude. This results in larger weights decaying more
rapidly. The error gradient used in CasPer thus becomes:

δΕ/δwij
CasPer  = δΕ/δwij  -  D* sign(wij)*w ij

2 * 2-0.01*HEpoch  
HEpoch refers to the number of epochs elapsed since the addition of the last hidden
neuron, sign returns the sign (positive/negative) of its operand, and D is a user defined
parameter which effects the magnitude of weight decay used.

In CasPer a new neuron is inserted when the RMS Error falls by less than 1% of its
previous value. The time period in epochs over which this measure is taken is given
by the heuristic formula: 15 + L*N, which was found experimentally to give good
results (N is the number of currently inserted neurons, and L is the training length
parameter which is set prior to training). The result of this training method is that
CasPer increases the period over which the network is trained as the network grows in
size.

3 EXTENSIONS TO THE CASPER ALGORITHM
The first extension to the CasPer algorithm involves the use of the SARPROP
algorithm to train all the incoming weights of the newly inserted hidden neuron (that
is, all weights in group L1). All remaining weights are still trained by RPROP.

The SARPROP algorithm is based on RPROP, but uses a noise factor to enhance the
ability of the network to escape from local minima. Noise is added to the update value
of a weight when both the error gradient changes sign in successive epochs (indicating
the presence of a minimum), and the magnitude of the update value is less than a
threshold value. The amount of noise added falls as training continues via a Simulated
Annealing term. This combination of techniques has been shown to improve RPROP’s
ability to escape local minima [5]. The equation used to modify the update value, ∆ij,
whenever a change in error gradient sign is encountered is:

∆ij(t+1) = ∆ij(t) η
− + k1rS if ∆ij(t) < k2*S

    = ∆ij(t) η
− otherwise



where r is a random number between 0 and 1, η− is the standard RPROP update
constant, k1 and k2 are constants, and S is the SA term which is set to 2-0.03*HEpoch. The
version of CasPer employing this extension will be termed S_CasPer.

The second extension involves the use of a pool of hidden neurons, each with different
initial random starting weights, as in CasCor. Each hidden neuron in the pool is
trained using SARPROP, as in the first extension. The network giving the smallest
RMS Error value is selected once all hidden neurons complete training. In the case
where one or more hidden neurons manage to learn the problem to satisfaction, the
hidden neuron with best performance on the test set is chosen. It should be noted that
in CasPer the whole network must be trained for each hidden neuron in the pool, so
this extension will be computationally expensive. This extension will be term
SP_CasPer.

Two minor modifications were also made to the original CasPer algorithm. First,
training was started with no hidden neurons. The reason for this change is that many
problems can be satisfactorily solved with no hidden neurons. Second, the time period
over which hidden neuron training is performed was simplified from 15+L*N to L.
This was done to allow the SA term to act over a longer period (a larger L value is
used than in the original CasPer). These modifications were used by both S_CasPer
and SP_CasPer.

4 COMPARITIVE SIMULATIONS
To test the effectiveness of S_CasPer and SP_CasPer, their performance was
compared against that of CasPer and CasCor on a number of benchmark problems.
CasPer, S_CasPer, and SP_CasPer share a number of parameters which were set as
follows. The following (standard) RPROP values were used: η+ = 1.2, η- = 0.5, ∆max =
50, ∆min = 1x10-6. A constant value of 0.0001 was added to the derivative of the
sigmoid in order to overcome the ‘flat spot’ problem, and the hyperbolic arctan error
function was used [7]. Weights in the initial network were initialised to evenly
distributed random values in the range -0.7 to 0.7. All weights associated with newly
inserted hidden neurons were initialised in the range -0.1 to 0.1.

Training of the initial network used the initial update value ∆0 = 0.2. Τhe values of
L1, L2, and L3 were set to 0.2, 0.005, and 0.001 respectively. All of the above
parameter values were found to be essentially problem independent, and hence are
treated as constants. The remaining parameter values D (the weight decay value) and
L (the training length), were set depending on the problem. CasPer halts training when
network outputs for all patterns are within 0.2 of the required training outputs, in
which case the training set was considered completely learnt. This more restricted
value (0.4 being the more traditional value [7]) was chosen since it was found that it
improved CasPer’s performance on the test set, although it did result in additional
training time, and sometimes in larger networks. S_CasPer and SP_CasPer use the
same criterion. For judging success on the test set for classification problems the



traditional criterion [7] was used: a pattern was considered correct if all its outputs
were within 0.4 of the required outputs.

For S_CasPer and SP_CasPer, the SARPROP parameters used were: k1 = 1, and k2 =
0.4. SP_CasPer used a pool of eight hidden neurons. The CasCor algorithm used for
benchmarking was obtained from the public domain Carnegie Mellon University
(CMU) AI Repository. For all comparisons, a pool of eight candidate neurons were
used and a maximum learning iteration of 100 was set for both the hidden and output
neurons, as used by Fahlman [2] for the two spirals data set. All other CasCor
parameters were kept at the default values.

 4.1 TWO SPIRALS DATA SET
The first data set in the comparison was the two spirals problem, consisting of two
interlocked spirals, each made up of 97 points, which the network must learn to
distinguish. Each training pattern consists of two inputs (the x,y coordinates) and a
single output (the spiral classification). This problem was used by Fahlman [2] to
demonstrate the effectiveness of the CasCor algorithm on a problem known to be very
difficult for traditional Back Propagation to solve. In order to compare CasPer and
CasCor on this problem, 100 independent runs were performed using each algorithm.
The standard test set for the two spirals data set (as supplied with the CasCor
algorithm) was used to measure the resulting generalisation ability of the networks.
This test set consists of two spirals each made up of 96 points, slightly rotated relative
to the original spirals.

The parameter values used for the CasPer algorithm were L = 5 and D = 5x10-3.
S_CasPer and SP_CasPer used L = 100 and D = 1x10-2. The standard symmetric
sigmoid non linearity (-0.5, 0.5) was used. Since the two spirals problem is an
artificial data set without the presence of noise, training was continued until the
training set was learnt completely. At this point the mean, standard deviation and
median for the following characteristics were measured: epochs trained, hidden
neurons inserted, number of connection crossings and percentage correct on the test
set. Fahlman [2] defines the term connection crossings as “the number of multiply-
accumulate steps to propagate activation values forward through the network and error
values backward”. This term is a more valid way to compare learning times than
number of epochs trained, since CasCor makes use of weight freezing and caching
which greatly improves the algorithm’s efficiency. It should be noted that in CasCor
an epoch is defined as single pass of all training patterns through all the candidate
neurons, and is not calculated on a per candidate basis, as it is for SP_CasPer. For this
reason also, connection crossings give a much better indication of computational cost.

The results for CasPer, S_CasPer, SP_CasPer and CasCor on the two spirals problem
are shown in Table 1. S_CasPer was able to produce networks with two less hidden
neurons in the median case than CasPer, which equates to 31 less weights being used
because of the cascade architecture. S_CasPer also gave improved test set results. One
reason for this improvement may be due to the smaller networks created by S_CasPer.
In terms of connection crossings S_CasPer and CasPer were approximately equal.



SP_CasPer showed moderately improved performance over that of S_CasPer, with
SP_CasPer producing networks with 10 hidden neurons in the median case.
SP_CasPer is thus producing networks in the median case which use less than half the
number of weights than those of CasCor (88 weights compared to 187). SP_CasPer
also produced a slight improvement in the test set results compared to S_CasPer. As
expected, SP_CasPer was more computationally expensive, with it performing
approximately six times as many connection crossings as S_CasPer.

Epochs Hidden Neurons Conn. Crossings Test Set %
CasPer
Average   2437   13.49   9.57 x 107   97.80
Median   2307   13.00   8.56 x 107   98.44
Std. Dev.     627     2.41   5.37 x 107     2.22
S_CasPer
Average   4392   11.64    1.12 x 108    98.38
Median   4294   11.00    1.03 x 108    98.96
Std. Dev.     755     2.34    4.38 x 107      1.73
SP_CasPer
Average 27445   10.35    6.07 x 108    98.81
Median 26593   10.00    5.42 x 108    98.96
Std. Dev.   5797     2.29    3.17 x 108      1.38
CasCor
Average   1686   15.96   2.02 x 107   96.13
Median   1689   16.00   1.99 x 107   96.35
Std. Dev.     209     2.17   4.47 x 106     2.11

Table 1. Results on the Two Spiral data set.

        Fig. 2. CasCor.                             Fig. 3. CasPer.                    Fig. 4. S_CasPer.

For the two spirals data set, CasCor produced 3 networks which gave 100% correct on
the test set. CasPer, S_CasPer and SP_CasPer produced 30, 34 and 41 of these
networks respectively. Of those networks producing 100% on the test set, Figures 2, 3
and 4 are plots produced from CasCor, CasPer and S_CasPer runs, which illustrate



qualitatively both CasPer and S_CasPer’s better generalisation compared to CasCor
even in cases where a 100% correct result was achieved on the test set.

4.2 IRIS DATA SET
Fisher’s classic Iris data, which classifies irises into three classes, was used for the
next comparison. The Iris data set was obtained from the UCI database [8], and
consists of 150 patterns, of which 120 were randomly selected as training patterns,
leaving 30 as test patterns. Each Iris pattern consists of 4 input and 3 output values.
The parameter values used for the CasPer algorithm were L = 5 and D = 1x10-5, while
S_CasPer and SP_CasPer used L = 100 and D = 1x10-3. The asymmetric sigmoid (0,
1) non linearity was used, since the output values of this data set are in the range 0 to
1. One hundred separate training runs with different initial weight values were
performed for the Iris data set, and the results are shown in Table 2.

Epochs Hidden Neurons Conn. Crossings Test Set %
CasPer
Average      326   4.01   2.89 x 106   88.87
Median      316   4.00   2.62 x 106   90.00
Std. Dev.        72   1.02   1.07 x 106     3.75
S_CasPer
Average    1227   3.46   8.73 x 106   88.97
Median    1194   3.00   7.81 x 106   90.00
Std. Dev.      283   1.44   3.99 x 106     3.94
SP_CasPer
Average    4462   1.82   2.64 x 107   87.43
Median    4567   2.00   2.70 x 107   86.67
Std. Dev.      799   0.54   6.22 x 106     3.09
CasCor
Average      431   2.60   1.47 x 106   72.22
Median      430   3.00   1.40 x 106   73.33
Std. Dev.        95   0.69   4.74 x 105     7.10

Table 2. Results on the Iris data set.

The performance of each network on the test set after the addition of each new hidden
neuron was measured. A plot of the median values obtained is shown in Figure 5.
S_CasPer was again able to reduce the average network size produced compared to
CasPer. In addition, Figure 5 shows that S_CasPer’s initial performance on the test set
was significantly better than CasPer, although the two became approximately the same
as additional neurons were inserted. SP_CasPer was able to produce further decreases
in network size, although a slight drop in generalisation was produced. It seems likely
that this is due to overfitting, since in SP_CasPer the hidden neuron selected is the one
which gives the largest decrease in error, resulting in networks which may overfit the
data set. The maximum number of hidden neurons inserted by SP_CasPer was 3,
hence its cutoff in Figure 5.
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Fig. 5. Performance on the Iris test set after the insertion of each hidden neuron.

The reason for S_CasPer’s increased computational cost compared to CasPer in this
problem is that the training period for CasPer is initially very small, and only
increases as the network grows in size. Since only small networks were produced for
this data set, CasPer is less expensive than S_CasPer, as S_CasPer uses a constant
value as the training period (100 in this case). Again, SP_CasPer is computationally
more expensive than S_CasPer: SP_CasPer performs approximately 3 times as many
connection crossings as S_CasPer.

5 DISCUSSION
In both comparisons S_CasPer is shown to produce decreases in network size
compared to CasPer. This can attributed in the main to the new hidden neuron being
trained by SARPROP, which allows this neuron to perform a better search of the error
surface. S_CasPer is generally able to maintain, and sometimes improve the good
generalisation ability of CasPer.

Similar improvements are made by the SP_CasPer algorithm. The amount of
improvement in hidden neurons inserted by SP_CasPer over S_CasPer, while
significant, is not in proportion to the amount of extra computational cost involved in
performing the additional search provided by using a pool of hidden neurons. One
reason for this may be that the search performed by S_CasPer is very successful at
finding a good solution, and this is not much improved even when additional searches
are performed. An advantage of SP_CasPer, however, is that it is ideally suited for
parallel implementation, with each network in the pool trained on a separate
processor. This largely overcomes the additional time required to train a pool of
neurons.

The ability to create cascade networks with smaller numbers of hidden neurons is
especially relevant to the area of VLSI implementation of these networks. Cascade
networks result in deep networks with large fan-in and propagation delays [2]. Smaller
networks reduce these difficulties. One problem not addressed by these improvements
to CasPer is that the size of the constructed network is difficult to estimate prior to



training. A VLSI implementation, however, will need to set an upper bound on both
fan in and network depth.  Future work with CasPer is aimed at addressing this
problem.

6 CONCLUSION
The S_CasPer extension of the CasPer algorithm, which uses SARPROP as the
training method for the newly inserted hidden neurons, results in smaller networks,
often with better generalisation. The SP_CasPer extension, which uses of a pool of
hidden neurons trained by SARPROP, results in further improvements in network
size, although there is an increased computational cost. Additional comparisons
between CasPer, S_CasPer and SP_CasPer using regression benchmarks [9] support
the conclusions drawn here.
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