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Abstract - The CasPer algorithm is a constructive neurévaek algorithm. CasPer creates
cascade network architectures in a similar manoe€ascade Correlation. CasPer, however,
uses a modified form of the RPROP algorithm, terfReagressive RPROP, to train the whole
network after the addition of each new hidden neufrevious work with CasPer has shown
that it builds networks which generalise bettemtl@asCor, often using less hidden neurons.
This work adds two extensions to CasPer. Firstemlmancement to the RPROP algorithm,
SARPROP, is used to train newly installed hiddearoes. The second extension involves the
use of a pool of hidden neurons, each trained uSARPROP, with the best performing
selected for insertion into the network. These msiens are shown to result in CasPer
producing more compact networks which often gefsabetter than those produced by the
original CasPer algorithm.
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1INTRODUCTION

The CasPer [1] algorithm has been shown to be a&golnmethod for training neural
networks. CasPer is a constructive algorithm whiterts hidden neurons one at a
time to form a cascade architecture, similar to d@de Correlation (CasCor) [2].
CasPer has been shown to produce networks withr fleidden neurons than CasCor,
while also improving the resulting network genesation, especially with regression
tasks [1]. The reasons for CasPer's improved perdmice is that it does not use either
Cascor’s correlation measure, which can cause peneralisation performance [3],
or weight freezing, which can lead to oversize networks [4].

A difficult problem faced by both CasPer and Casisdhat the newly created hidden
neuron may have difficulty in converging to a gamdution on the error surface. One
main cause for this poor convergence may be thsepee of local minima. CasCor
addresses this problem by creating a pool of hiddamons, each with a different set
of starting weights, thus enabling a wider searcthe error surface and reducing the
chance of convergence to a poor local minimum.

In order to improve the convergence ability of GaxisRwo extensions are proposed.
The first is to employ the SARPROP algorithm [5]ttain the newly inserted hidden
neuron. SARPROP is based on the RPROP algorithm d6fl uses Simulated
Annealing to enhance the convergence propertieRRROP. SARPROP has been
shown to be successful in escaping local minimad5Sproperty which will enable a
better search of the error surface by the new Hidueuron. The second extension



involves CasPer training a pool of hidden neurassis done in CasCor. Each hidden
neuron in the pool is trained using SARPROP, as in the first extension.

2THE CASPER ALGORITHM

CasPer uses a modified version of the RPROP ahgofior network training. RPROP
is a gradient descent algorithm which uses sepadaptive learning rates for each
weight. Each weight begins with an initial learningte, which is then adapted
depending on the sign of the error gradient seethéywveight as it traverses the error
surface. This results in the update value for each weightptdaly growing or
shrinking as a result of the sign of the gradient seen by that weight.

The CasPer algorithm constructs cascade networks similar manner to CasCor:
CasPer starts with a single hidden neuron and saivedy inserts hidden neurons.
RPROP is used to train the whole network each @inmédden neuron is added. The
use of RPROP is modified, however, such that whemwa neuron is inserted, the
initial learning rates for the weights in the netlware reset to values which depend
on the position of the weight in the network (hetice name Progressive RPROP).
The network is divided into three separate grogash with its own initial learning
rate:L1, L2 andL3 (Figure 1). The first group is made up of all weigconnecting to
the new neuron from previous hidden and input nestrdhe second group consists of
all weights connecting the output of the new neumthe output neurons. The third
group is made up of the remaining weights, whichstst of all weights connected to,
and coming from, the old hidden and input neurons.
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Fig. 1. The CasPer architecture - a second hidden neussnust been added. The vertical
lines sum all incoming inputs.



The values ot 1, L2 andL3 are set such thatl >> L2 > L3. The reason for these
settings is similar to the reason that CasCor tisescorrelation measure: the high
value ofL1 as compared th2 and L3 allows the new hidden neuron to learn the
remaining network error. Similarly, having larger tharl3 allows the new neuron to
reduce the network error, without too much intexfeze from other weights.
Importantly, however, no weights are frozen, anddeeif benefit can be gained by the
network by modifying an old weight, this occurdeit at an initially slower rate than
the weights connected to the new neuron.

CasPer also makes use of weight decay as a meangtove the generalisation
properties of the constructed network. After sompegimentation it was found that
the addition of a Simulated Annealing (SA) termlaapto the weight decay, as used
in the SARPROP algorithm [5], often improved comesrce and generalisation. Each
time a new hidden neuron is inserted, the weighagdegins with a large magnitude,
which is then reduced by the SA term. The amounteifjht decay is proportional to
the square of the weight magnitude. This resultdarger weights decaying more
rapidly. The error gradient used in CasPer thus becomes:

6E/aNiJ_CasPer - 6E/6Ni,- - D* Sign(WJ)*WijZ * 2-0,01*HEpoch
HEpoch refers to the number of epochs elapsed since ttiti@d of the last hidden
neuron,sign returns the sign (positive/negative) of its opelamdD is a user defined
parameter which effects the magnitude of weight decay used.

In CasPer a new neuron is inserted when the RM&r Eaitls by less than 1% of its
previous value. The time period in epochs over Whhis measure is taken is given
by the heuristic formula: 15 + L*N, which was foumdperimentally to give good
results N is the number of currently inserted neurons, and the training length
parameter which is set prior to training). The tesd this training method is that
CasPer increases the period over which the netigdrkined as the network grows in
size.

3EXTENSIONSTO THE CASPER ALGORITHM

The first extension to the CasPer algorithm inveltbe use of the SARPROP
algorithm to train all the incoming weights of thewly inserted hidden neuron (that
is, all weights in group L1). All remaining weights are still trained by RPROP.

The SARPROP algorithm is based on RPROP, but usessa factor to enhance the
ability of the network to escape from local mininiise is added to the update value
of a weight when both the error gradient changgs si successive epochs (indicating
the presence of a minimum), and the magnitude efupdate value is less than a
threshold value. The amount of noise added fallsaaging continues via a Simulated
Annealing term. This combination of techniques lb@sn shown to improve RPROP’s
ability to escape local minima [5]. The equatioediso modify the update valua,
whenever a change in error gradient sign is encountered is:

Au(t"'l) :Aij(t) r]_ + klrS if Alj(t) < kz*S

=8N otherwise



where r is a random number between 0 andlis the standard RPROP update
constant, kand k are constants, and S is the SA term which iscsgP3HEP°! The
version of CasPer employing this extension will be termed S_CasPer.

The second extension involves the use of a pobidafen neurons, each with different
initial random starting weights, as in CasCor. Editdden neuron in the pool is
trained using SARPROP, as in the first extensidme fietwork giving the smallest
RMS Error value is selected once all hidden neurmmsplete training. In the case
where one or more hidden neurons manage to learprbblem to satisfaction, the
hidden neuron with best performance on the tesissgtosen. It should be noted that
in CasPer the whole network must be trained fohddadden neuron in the pool, so
this extension will be computationally expensivehisT extension will be term
SP_CasPer.

Two minor modifications were also made to the owdiCasPer algorithm. First,
training was started with no hidden neurons. Tlesea for this change is that many
problems can be satisfactorily solved with no hiddeurons. Second, the time period
over which hidden neuron training is performed wasaplified from 15+L*N to L.
This was done to allow the SA term to act overragér period (a larger L value is
used than in the original CasPer). These modificativere used by both S_CasPer
and SP_CasPer.

4 COMPARITIVE SIMULATIONS

To test the effectiveness of S _CasPer and SP_Ca#sr performance was
compared against that of CasPer and CasCor on &eruof benchmark problems.
CasPer, S_CasPer, and SP_CasPer share a numbaaofepers which were set as
follows. The following (standard) RPROP values wased:n” = 1.2,n" = 0.5, Ana=
50, Amin = 1x10° A constant value of 0.0001 was added to the devie of the
sigmoid in order to overcome the ‘flat spot’ praileand the hyperbolic arctan error
function was used [7]. Weights in the initial netwowere initialised to evenly
distributed random values in the range -0.7 to BlFweights associated with newly
inserted hidden neurons were initialised in the range -0.1 to 0.1.

Training of the initial network used the initial dgte valued, = 0.2. The values of
L1, L2, andL3 were set to 0.2, 0.005, and 0.001 respectively.ohlthe above
parameter values were found to be essentially probihdependent, and hence are
treated as constants. The remaining parameter ¥Blthe weight decay value) and
L (the training length), were set depending on tteblem. CasPer halts training when
network outputs for all patterns are within 0.2thé required training outputs, in
which case the training set was considered coniplédarnt. This more restricted
value (0.4 being the more traditional value [7])swehosen since it was found that it
improved CasPer’'s performance on the test setowdf it did result in additional
training time, and sometimes in larger networksC&Per and SP_CasPer use the
same criterion. For judging success on the testf@etlassification problems the



traditional criterion [7] was used: a pattern wamsidered correct if all its outputs
were within 0.4 of the required outputs.

For S_CasPer and SP_CasPer, the SARPROP paranmstdrsvere: k= 1, and k=
0.4. SP_CasPer used a pool of eight hidden neufdres CasCor algorithm used for
benchmarking was obtained from the public domainn€gie Mellon University
(CMU) Al Repository. For all comparisons, a pooleafht candidate neurons were
used and a maximum learning iteration of 100 wagaseboth the hidden and output
neurons, as used by Fahlman [2] for the two spiddta set. All other CasCor
parameters were kept at the default values.

41TWO SPIRALSDATA SET

The first data set in the comparison was the twicalpproblem, consisting of two
interlocked spirals, each made up of 97 points,ctvithe network must learn to
distinguish. Each training pattern consists of twputs (the x,y coordinates) and a
single output (the spiral classification). This Iplem was used by Fahlman [2] to
demonstrate the effectiveness of the CasCor algoréin a problem known to be very
difficult for traditional Back Propagation to solvin order to compare CasPer and
CasCor on this problem, 100 independent runs werfopned using each algorithm.
The standard test set for the two spirals data(aetsupplied with the CasCor
algorithm) was used to measure the resulting géisatian ability of the networks.
This test set consists of two spirals each madef @6 points, slightly rotated relative
to the original spirals.

The parameter values used for the CasPer algornitene L = 5 andD = 5x10°.
S_CasPer and SP_CasPer uked 100 andD = 1x10% The standard symmetric
sigmoid non linearity (-0.5, 0.5) was used. Sinbe two spirals problem is an
artificial data set without the presence of noisajning was continued until the
training set was learnt completely. At this poihte tmean, standard deviation and
median for the following characteristics were meadu epochs trained, hidden
neurons inserted, number of connection crossingspancentage correct on the test
set. Fahlman [2] defines the term connection cngssis “the number of multiply-
accumulate steps to propagate activation valuegfolthrough the network and error
values backward”. This term is a more valid wayctimpare learning times than
number of epochs trained, since CasCor makes useeight freezing and caching
which greatly improves the algorithm'’s efficiendy.should be noted that in CasCor
an epoch is defined as single pass of all traifatierns through all the candidate
neurons, and is not calculated on a per candidadis,bas it is for SP_CasPer. For this
reason also, connection crossings give a much better indication of computational cost.

The results for CasPer, S_CasPer, SP_CasPer afbiCas the two spirals problem
are shown in Table 1. S_CasPer was able to prodetveorks with two less hidden
neurons in the median case than CasPer, whichejt@mB1 less weights being used
because of the cascade architecture. S_CasPeagalsamproved test set results. One
reason for this improvement may be due to the emakttworks created by S_CasPer.
In terms of connection crossings S_CasPer and CasPer were approximately equal.



SP_CasPer showed moderately improved performanee tbat of S_CasPer, with
SP_CasPer producing networks with 10 hidden neurionghe median case.
SP_CasPer is thus producing networks in the mezdiaa which use less than half the
number of weights than those of CasCor (88 weigbhtapared to 187). SP_CasPer
also produced a slight improvement in the testresstilts compared to S_CasPer. As
expected, SP_CasPer was more computationally exgenwith it performing
approximately six times as many connection crossings as S_CasPer.

| Epochs | Hidden Neurons| Conn. Crossings  Test Set 9
CasPer
Average 2437 13.49 9.57 x10 97.80
Median 2307 13.00 8.56 x 10 98.44
Std. Dev. 627 241 5.37 x'10 2.22
S CasPer
Average 4392 11.64 1.12 x®10 98.38
Median 4294 11.00 1.03 x40 98.96
Std. Dev. 755 2.34 4.38 x'10 1.73
SP_CasPer
Average | 27445 10.35 6.07 x°10 98.81
Median 26593 10.00 5.42 x40 98.96
Std. Dev. 5797 2.29 3.17 x40 1.38
CasCor
Average 1686 15.96 2.02x10 96.13
Median 1689 16.00 1.99 x 10 96.35
Std. Dev. 209 2.17 4.47 x™10 2.11

Table 1. Results on the Two Spiral data set.

Fig. 2. CasCor. Fig. 3. CasPer. Fig. 4. S_CasPer.

For the two spirals data set, CasCor produced8arks which gave 100% correct on
the test set. CasPer, S_CasPer and SP_CasPer gaod80¢ 34 and 41 of these
networks respectively. Of those networks produdif§% on the test set, Figures 2, 3
and 4 are plots produced from CasCor, CasPer a@hsPer runs, which illustrate



qualitatively both CasPer and S_CasPer’'s betteergdination compared to CasCor
even in cases where a 100% correct result was achieved on the test set.

42 1RISDATA SET

Fisher's classic Iris data, which classifies irise® three classes, was used for the
next comparison. The Iris data set was obtainedh ftbe UCI database [8], and
consists of 150 patterns, of which 120 were rangoselected as training patterns,
leaving 30 as test patterns. Each Iris patternistinsf 4 input and 3 output values.
The parameter values used for the CasPer algorithral. = 5 andD = 1x10°, while
S_CasPer and SP_CasPer used100 andD = 1x10°. The asymmetric sigmoid (O,
1) non linearity was used, since the output vabfahis data set are in the range 0 to
1. One hundred separate training runs with differgitial weight values were
performed for the Iris data set, and the results are shown in Table 2.

| Epochs | Hidden Neurons| Conn. Crossingg  Test Set %
CasPer
Average 326 4.01 2.89 x10 88.87
Median 316 4.00 2.62x10 90.00
Std. Dev. 72 1.02 1.07 x%10 3.75
S CasPer
Average 1227 3.46 8.73 x10 88.97
Median 1194 3.00 7.81 x10 90.00
Std. Dev. 283 1.44 3.99 x°10 3.94
SP_CasPer
Average 4462 1.82 2.64 x10 87.43
Median 4567 2.00 2.70x 10 86.67
Std. Dev. 799 0.54 6.22 x%10 3.09
CasCor
Average 431 2.60 1.47 x%0 72.22
Median 430 3.00 1.40 x 10 73.33
Std. Dev. 95 0.69 4.74 x°10 7.10

Table 2. Results on the Iris data set.

The performance of each network on the test set #fe addition of each new hidden
neuron was measured. A plot of the median valudairdd is shown in Figure 5.
S_CasPer was again able to reduce the averagerkedize produced compared to
CasPer. In addition, Figure 5 shows that S_Cashetial performance on the test set
was significantly better than CasPer, althoughttteebecame approximately the same
as additional neurons were inserted. SP_CasPeahVado produce further decreases
in network size, although a slight drop in geneatibn was produced. It seems likely
that this is due to overfitting, since in SP_CadRerhidden neuron selected is the one
which gives the largest decrease in error, reyltinnetworks which may overfit the
data set. The maximum number of hidden neurongtatey SP_CasPer was 3,
hence its cutoff in Figure 5.
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Fig. 5. Performance on the Iris test set after the insertion of each hidden neuron.

The reason for S_CasPer’s increased computatiamsilammpared to CasPer in this
problem is that the training period for CasPer n#tially very small, and only
increases as the network grows in size. Since smigll networks were produced for
this data set, CasPer is less expensive than SeCas® S CasPer uses a constant
value as the training period (100 in this case)aiAgSP_CasPer is computationally
more expensive than S_CasPer; SP_CasPer perfopnsxapately 3 times as many
connection crossings as S_CasPer.

5 DISCUSSION

In both comparisons S_CasPer is shown to produageases in network size
compared to CasPer. This can attributed in the nmathe new hidden neuron being
trained by SARPROP, which allows this neuron tdquen a better search of the error
surface. S_CasPer is generally able to maintaid, sometimes improve the good
generalisation ability of CasPer.

Similar improvements are made by the SP_CasPerritdgp The amount of
improvement in hidden neurons inserted by SP_CasRer S _CasPer, while
significant, is not in proportion to the amounteoftra computational cost involved in
performing the additional search provided by usingool of hidden neurons. One
reason for this may be that the search performe& bgasPer is very successful at
finding a good solution, and this is not much impd even when additional searches
are performed. An advantage of SP_CasPer, howevéhat it is ideally suited for
parallel implementation, with each network in theop trained on a separate
processor. This largely overcomes the additionaletirequired to train a pool of
neurons.

The ability to create cascade networks with smaliembers of hidden neurons is
especially relevant to the area of VLSI implementatof these networks. Cascade
networks result in deep networks with large famiml propagation delays [2]. Smaller
networks reduce these difficulties. One problemaddressed by these improvements
to CasPer is that the size of the constructed n&tvgodifficult to estimate prior to



training. A VLSI implementation, however, will ne¢d set an upper bound on both
fan in and network depth. Future work with CasPerimed at addressing this
problem.

6 CONCLUSION

The S_CasPer extension of the CasPer algorithm¢chwhses SARPROP as the
training method for the newly inserted hidden nesroresults in smaller networks,
often with better generalisation. The SP_CasPearnsittn, which uses of a pool of
hidden neurons trained by SARPROP, results in érimprovements in network
size, although there is an increased computaticoat. Additional comparisons
between CasPer, S_CasPer and SP_CasPer usingsi@yriesnchmarks [9] support
the conclusions drawn here.
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